Building Information Management

A Standard Framework and Guide to BS 1192

Mervyn Richards
Publishing and liability

This guide includes relevant sections from the acknowledged groups, but also includes new information from current learning by the Construction Project Information Committee (CPIC) and the British Standards Institute (BSI) on a number of recent projects.

This information is published as guidance of a general nature, and the author accepts no liability for any use to which it may be put.
Acknowledgements

Production Information: A code of procedure for the construction industry, published by CPIC (www.CPIC.org.uk).

Many of the images in this guide are based on those first published in CPIC’s *Production Information: A code of procedure for the construction industry* (2003) and BS 1192:2007 documentation or by MR1 Consulting Ltd.
Contents

Preface xv

1 Introduction 1

2 Production information for the construction industry 3
 2.1 Roles and responsibilities 4
 2.2 Common Data Environment (CDE) 4
 2.3 Standard Method and Procedure (SMP) 5

3 Definitions 7

4 Roles and responsibilities 13
 4.1 Design Coordination Manager (also known as the Design Manager on some contracts) 13
 4.2 Lead Designer 13
 4.3 Task Team Manager 14
 4.4 Interface Manager 14
 4.5 Project Information Manager 14
 4.6 CAD Coordinator 14
 4.7 CAD Manager 15
 4.8 Software versions 16
 4.9 CAD checking tools 16

5 The Common Data Environment (CDE) 17
 5.1 Functional sections of the CDE 20
 5.1.1 Work-in-progress 20
 5.1.2 Shared 24
 5.1.3 Published documentation 28
 5.1.4 The purpose of the ‘D’ code 29

This is a sample chapter from Building Information Management. To read more and buy, visit http://shop.bsigroup.com/bip2207 © BSI British Standards Institution
5.1.5 Archive 36
5.1.6 The distributed CDE for project and programme 40
5.2 BIM and the Common Data Environment 40

6 Standard Method and Procedure 47
6.1 File naming 47
 6.1.1 File identifiers 47
 6.1.1.1 Document/drawing descriptor 48
 6.1.1.2 Graphic/model file descriptor 48
 6.1.1.3 All other documents 49
 6.1.2 Field name definitions 50
 6.1.2.1 Project 50
 6.1.2.2 Originator 51
 6.1.2.3 Zone 52
 6.1.2.4 Level/location 59
 6.1.2.5 File type 60
 6.1.2.6 Role codes 60
 6.1.2.7 Number 63
 6.1.2.8 File-identifier examples 64
 6.1.3 File-identifier metadata 65
 6.1.3.1 Status 67
 6.1.3.2 Revision 67
 6.1.3.3 Version 68
6.2 Origin and orientation 68
 6.2.1 Coordinates 68
 6.2.2 Spatial coordination 69
 6.2.3 Building grids 69
 6.2.4 Site surveys 70
 6.2.5 Alignment of the building to real-world coordinates 70
 6.2.6 Example of building alignment 72
 6.2.7 Dimensional consistency 72
6.3 Drawing sheet templates 73
6.3.1 Drawing title block attributes/tags 73
6.3.2 Model title block 74
6.3.3 Drawing sheet sizes 77
6.3.4 Drawing sheet scales 77
6.4 Layer standards 78
 6.4.1 Role 78
 6.4.2 Element/classification 79
 6.4.3 Presentation 79
 6.4.4 Description/alias 80
 6.4.5 Extract from BS 1192 80
6.5 Annotation 81
 6.5.1 Dimensions 82
 6.5.2 Abbreviations 82
 6.5.3 Symbols 82

7 Specification 85
 7.1 Master specification systems 86
 7.2 System software 87

8 Implications of design management 89
 8.1 Time and resource programming 90
 8.2 Approval of information 92

Appendix A Master document index template 95

Appendix B Process maps 97
 B.1 Creating a model file 98
 B.2 Sharing a model file 99
 B.3 Coordinating model files 100
 B.4 Transfer of ownership 101
 B.5 Creating a drawing rendition 102
 B.6 Design team sign-off process 103
 B.7 Approval route – stage 2 104
 B.8 Approval route – stage 3 105
Appendix G Abbreviations 127

Appendix H References and further reading 133
 Standards publications 133
 Other publications 134

Appendix I Contact details 135
Figures

1: High-level Common Data Environment 18
2: CDE expanded description 22
3: Example work-in-progress architects’ models 24
4: Architects’ models uploaded for sharing 26
5: Sharing model files 27
6: Coordinating model files 27
7: Uploading structural models 30
8: Architect’s removal of duplicate layers 31
9: Concurrent and iterative uploads and downloads 32
10: Creating drawings from shared models 34
11: Status D 37
12: Archive section of the CDE 38
13: CDE in team environment 41
14: CDE in programme environment 42
15: The BIM development process 45
16: Development of iBIM content 46
17: Examples of zones

18: 3D models that relate to a zone relating to a core

19: Ground floor slabs, columns, stairs – walls

20: Second floor as first – and third floor – as separate reference files

21: Completed architectural staircase core

22: Structural – foundations and floor lift as defined by structural frame assembly

23: Completed structural staircase core

24: Ground floor ductwork and ground floor risers + architectural fabric

25: Ductwork + architectural + structural for two floor lifts

26: Complete core all disciplines

27: Examples of zones in a building

28: Cartesian coordinate system

29: Building grid definition

30: Site grid definition

31: Alignment of the building to the real-world coordinates
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Building grid and setting out points</td>
<td>72</td>
</tr>
<tr>
<td>33</td>
<td>Drawing sheet title block</td>
<td>75</td>
</tr>
<tr>
<td>34</td>
<td>Model file</td>
<td>76</td>
</tr>
<tr>
<td>35</td>
<td>Model file title block</td>
<td>76</td>
</tr>
<tr>
<td>36</td>
<td>Some standard symbols</td>
<td>83</td>
</tr>
<tr>
<td>37</td>
<td>Simplified time and resource programme</td>
<td>91</td>
</tr>
<tr>
<td>38</td>
<td>Creating a model file</td>
<td>98</td>
</tr>
<tr>
<td>39</td>
<td>Sharing a model file</td>
<td>99</td>
</tr>
<tr>
<td>40</td>
<td>Coordinating model files</td>
<td>100</td>
</tr>
<tr>
<td>41</td>
<td>Transfer of layer ownership</td>
<td>101</td>
</tr>
<tr>
<td>42</td>
<td>Creating a drawing rendition</td>
<td>102</td>
</tr>
<tr>
<td>43</td>
<td>Design team approval stage 1</td>
<td>103</td>
</tr>
<tr>
<td>44</td>
<td>Approval route: stage 2</td>
<td>104</td>
</tr>
<tr>
<td>45</td>
<td>Approval route: stage 3</td>
<td>105</td>
</tr>
</tbody>
</table>
Tables

1: Definition of terms 7
2: Assigned roles 15
3: Project codes 51
4: Example of originator codes 51
5: Level codes 60
6: File types – for drawings and models 61
7: File types – for documents 61
8: Role codes (from BS 1192) 62
9: Status codes 66
10: Examples for purpose of issue 67
11: Setting out a building grid 72
12: Drawing sheet sizes 77
13: Drawing sheet scales 77
14: Example of layer name codes 78
15: Presentation codes from BS 1192 79
16: Approvals stages for a model file 92
Contents

17: MDI template ... 96

18: Example list of abbreviations 127
Preface

British Standard BS 1192:2007, Collaborative production of architectural, engineering and construction information — Code of Practice was published to provide a standard and ‘best-practice’ method for the development, organization and management of production information for the construction industry.

A ‘standard’ is required, so that all offices, teams or team members can produce information to the same form and quality – enabling it to be used and reused without change or interpretation. If an individual, office or team changes the standard without agreement, it will hinder collaboration and document sharing. ‘My standard’ is not acceptable in a team working environment.

Construction Project Information Committee (CPIC) defines production information as ‘the information prepared by designers that is passed to a construction team to enable a project to be constructed’. It is independent of who employs the designers and which procurement route or form of contract is used. Production information is the output of the design team and specialist contractors, and is conveyed by drawings, specifications and bills of quantity or schedules of work. In a Building Information Modelling (BIM) working environment the delivery may take the form of three-dimensional models with associated information attached by direct attribution or population from a database.

Unless this information is complete, accurate, well structured and coordinated, it will not be effective and – no matter how good the design – it will not be satisfactorily realized on site.

Poor production information causes delays, extra costs and poor quality, which in turn give rise to disputes over who is responsible for the problems.

Good production information is therefore vitally important to the success of the practice, project and delivery of the major contracts handover document required for the successful management and maintenance of the asset throughout its life.

BS 1192 is not only a means of delivering the two-dimensional drawing information that is required for a project, but it is also the basis on which information management and
the delivery of the three-dimensional Integrated Building Information Model (iBIM) and its associated data should be delivered.

We have compiled this guide to give more detailed information on the specific elements of the process supported by the standard.
1 Introduction

This guidance document has been produced using background information on procedures that have been taken from successful application in the construction industry, and has been developed in conjunction with the management processes required to manage information through the project lifecycle. The adoption of such procedures will allow the move from a document-centric environment to an information-centric environment – unlocking the power of information technology.

The toolkit has been developed from the computer-aided design (CAD) standards, methods and procedures of over 70 different companies in the construction industry who work in collaborative framework environments, Construction Project Information Committee (CPIC), its consultants and steering groups, Construction Industry Research and Information Association (CIRIA) research documents (funded by the DTI), and many other individual practitioners.

It also takes account of BS 1192, ISO 13567, CPIC’s Production Information: A code of procedure for the construction industry, Uniclass classifications and the PIX Protocol Toolkit, developed by the Building Centre Trust. All of these documents are now available on the CPIC website.

This procedure relies heavily on industry documentation, research and practical application within live projects. The projects range from simple housing developments to the value of a few hundred thousand pounds to the most prestigious multi-billion-pound projects.

The knowledge and experiences of those practices have been measured and published over the past 15 years, showing both benefits and blockers to the application of collaborative working. For the most part, such innovative applications have been successful, with the benefits far outweighing the effort employed.

Recommendation: these procedures apply to all organizations, from small consultancies and small projects to major contractors and large-scale projects.
2 Production information for the construction industry

Research has shown that inaccurate, incomplete and ambiguous production information causes many problems on site. The impacts on the project are late delivery and increased cost – estimated to amount to approximately 25–30 per cent of the construction cost, and affecting each member of the supply chain. Effective communication of high-quality production information between designers, manufacturers/fabricators and constructors is therefore essential for the satisfactory realization of construction projects.

The evidence shows that improving the quality of production information reduces the cost of developing that information, as well as the incidence of site-quality problems, leading to significant savings in the cost of construction work. The 2003 CPIC publication *Production Information: a code of procedure for the construction industry* quotes an 18 per cent reduction in drawing costs and an overall cost–benefit of at least 10 per cent of the contract sum.

Further testing on live projects has demonstrated that, when applied properly, standard methods and procedures provide savings and improved profit for each office and all members of the supply chain. To change or ‘simplify’ any element of the procedure – without an understanding of the impact of that change – puts the improvements at risk, and at best will only maintain the ‘status quo’.

In addition, the processes and procedures offer the potential for greater saving in the delivery of the lifecycle information and the asset management data to be used and updated throughout the life of the facility or utility.

There are three specific areas that must be addressed to enhance the production information process. These are:

- roles and responsibilities;
- Common Data Environment (CDE); and
- Standard Method and Procedure (SMP).
2.1 Roles and responsibilities

Ownership of data along with the clear definition of responsibility is a crucial part of any design delivery. This document defines specific roles together with associated responsibilities to aid the process.

2.2 Common Data Environment (CDE)

The CDE is a procedure for managing the iterative development of the design documentation to achieve full integration and spatial coordination of the data/information from all participants and offices, and from all originators within project supply chains.

These procedures are not restricted to the development of the design team information. The procedure must be used throughout the process of delivery and into the management of the asset itself. The subcontractor and fabrication design teams must deliver the final ‘virtual construction’ model representing the actual construction elements. In turn the contractor, commissioning agents and suppliers must also use the CDE to complete the database of information required for asset management.

The procedure also ensures that data/information is checked and issued fit for a specific purpose at a number of defined ‘gates’ such that it may be used for the stated purpose. Finally, the procedure allows for the dissemination of the signed-off information ‘fit for detail design development’ or ‘fit for construction’, and the collection of all relevant data/information needed to deliver the project handover document for the administration, maintenance and deconstruction of the final product.

These processes were well defined and managed in a paper-based filing system, but with the adoption of new electronic technologies, the need for good management has been overlooked and the systems have not been replaced.

The procedures outlined in this document apply to all approaches to project modelling, including:

- coordination of the project model files in 2D as they develop;
- coordination of the project model files in 3D as they develop;
- production of 2D drawings from 3D models;
• production of 2D drawings using 2D CAD drafting software;
• the collection, management and dissemination of all relevant construction documentation;
• the management of all spreadsheets, text files, etc. as extracts from the model;
• application of the process and procedures for the delivery of the ‘integrated Building Information Model’ (iBIM) and all relevant handover documentation; and
• application and coordination of the specifications and costing requirements.

2.3 Standard Method and Procedure (SMP)

This document also defines a Standard Method and Procedure (SMP) that should be used for developing and presenting the design information and documentation for construction projects. Organizations should define standards consistent with BS 1192.

When commencing a project that will involve the production of CAD/BIM information, it is critical for each office to adopt the approaches outlined in this document, when using any software solution for producing 3D or 2D models and 2D drawings.

To implement this SMP, the following eight principles should be followed:

• Roles, responsibilities and authorities: agree roles, responsibilities and authorities – in particular, the responsibility for design coordination of the various design disciplines.
• Common Data Environment (CDE): adopt a CDE approach and allow information to be shared between all members of the office team. Some form of document repository – for example, a project extranet or electronic document management system – will need to be used when collaborating on a project.
• Document management/electronic data management (DM/EDM): agree a suitable information hierarchy that will support the concepts of the CDE and the document repository.
• File-naming convention: adopt file-/document-naming conventions, so that relevant information can be identified using file names. Agree the reference codes for ‘status’ and ‘revision’ of files and documents, but these are not part of the file name.
• Origin and setting out: agree the origin of the coordinate system and method for spatial coordination.
• Drawing sheet templates: agree the title block, attributes, paper sizes and production scales. Make model file and drawing templates available including: title blocks, layer names, text styles, line types, etc. for consistent delivery of the final construction information.
• Layer standard: agree a ‘layer-naming standard’ based on BS 1192 that includes a classification system. BS 1192 recommends the use of the Uniclass classification system.
• Annotation: agree a standard for abbreviations, text dimensions and symbols and ensure all models are drawn to scale and dimensioned as such.

Each organization involved must adopt the project SMP, and all relevant parties (client, design consultants, supply chain partners, etc.) must agree and commit to it. Each organization should produce the project SMP at the pre-contract stage and include it in the procurement documents and contracts.