ASTM E2982 - 14e1 - Standard Guide for Nondestructive Testing of Thin-Walled Metallic Liners in Filament-Wound Pressure Vessels Used in Aerospace Applications

ASTM E2982 - 14e1

Standard Guide for Nondestructive Testing of Thin-Walled Metallic Liners in Filament-Wound Pressure Vessels Used in Aerospace Applications

Status : Current   Published : October 2014



1.1 This guide discusses current and potential nondestructive testing (NDT) procedures for finding indications of discontinuities in thin-walled metallic liners in filament-wound pressure vessels, also known as composite overwrapped pressure vessels (COPVs). In general, these vessels have metallic liner thicknesses less than 2.3 mm (0.090 in.), and fiber loadings in the composite overwrap greater than 60 percent by weight. In COPVs, the composite overwrap thickness will be of the order of 2.0 mm (0.080 in.) for smaller vessels, and up to 20 mm (0.80 in.) for larger ones.

1.2 This guide focuses on COPVs with nonload sharing metallic liners used at ambient temperature, which most closely represents a Compressed Gas Association (CGA) Type III metal-lined COPV. However, it also has relevance to (1) monolithic metallic pressure vessels (PVs) (CGA Type I), and (2) metal-lined hoop-wrapped COPVs (CGA Type II).

1.3 The vessels covered by this guide are used in aerospace applications; therefore, the examination requirements for discontinuities and inspection points will in general be different and more stringent than for vessels used in non-aerospace applications.

1.4 This guide applies to (1) low pressure COPVs and PVs used for storing aerospace media at maximum allowable working pressures (MAWPs) up to 3.5 MPa (500 psia) and volumes up to 2 m 3 (70 ft 3), and (2) high pressure COPVs used for storing compressed gases at MAWPs up to 70 MPa (10,000 psia) and volumes down to 8000 cm 3 (500 in. 3). Internal vacuum storage or exposure is not considered appropriate for any vessel size.

1.5 The metallic liners under consideration include but are not limited to ones made from aluminum alloys, titanium alloys, nickel-based alloys, and stainless steels. In the case of COPVs, the composites through which the NDT interrogation must be made after overwrapping include, but are not limited to, various polymer matrix resins (for example, epoxies, cyanate esters, polyurethanes, phenolic resins, polyimides (including bismaleimides), polyamides) with continuous fiber reinforcement (for example, carbon, aramid, glass, or poly-(phenylenebenzobisoxazole) (PBO)).

1.6 This guide describes the application of established NDT procedures; namely, Acoustic Emission (AE, Section 7), Eddy Current Testing (ECT, Section 8), Laser Profilometry (LP, Section 9), Leak Testing (LT, Section 10), Penetrant Testing (PT, Section 11), and Radiologic Testing (RT, Section 12). These procedures can be used by cognizant engineering organizations for detecting and evaluating flaws, defects, and accumulated damage in metallic PVs, the bare metallic liner of COPVs before overwrapping, and the metallic liner of new and in-service COPVs.

1.7 Due to difficulties associated with inspecting thin-walled metallic COPV liners through composite overwraps, and the availability of the NDE methods listed in Section 1.6 to inspect COPV liners before overwrapping and metal PVs, ultrasonic testing (UT) is not addressed in this standard. UT may still be performed as agreed upon between the supplier and customer. Ultrasonic requirements may utilize Practice E2375 as applicable based upon the specific liner application and metal thickness. Alternate ultrasonic inspection methods such as Lamb wave, surface wave, shear wave, reflector plate, etc. may be established and documented per agreed upon contractual requirements. The test requirements should be developed in conjunction with the specific criteria defined by engineering analysis.

1.8 In general, AE and PT are performed on the PV or the bare metallic liner of a COPV before overwrapping (in the case of COPVs, AE is done before overwrapping to minimize interference from the composite overwrap). ET, LT, and RT are performed on the PV, bare metallic liner of a COPV before overwrapping, or on the as-manufactured COPV. LP is performed on the inner and outer surfaces of the PV, or on the inner surface of the COPV liner both before and after overwrapping. Furthermore, AE and RT are well suited for evaluating the weld integrity of welded PVs and COPV liners.

1.9 Wherever possible, the NDT procedures described shall be sensitive enough to detect critical flaw sizes of the order of 1.3 mm (0.050 in.) length with a 2:1 aspect ratio.

Note 1:  Liners often fail due to improper welding resulting in initiation and growth of multiple small discontinuities of the order of 0.050 mm (0.002 in.) length. These will form a macro-flaw of 1-mm (0.040-in.) length only at higher stress levels.

1.10 For NDT procedures that detect discontinuities in the composite overwrap of filament-wound pressure vessels (namely, AE, ET, shearography, thermography, UT and visual examination), consult E07’s forthcoming Guide for Nondestructive Testing of Composite Overwraps in Filament-Wound Pressure Vessels Used in Aerospace Applications.

1.11 In the case of COPVs which are impact damage sensitive and require implementation of a damage control plan, emphasis is placed on NDT procedures that are sensitive to detecting damage in the metallic liner caused by impacts at energy levels which may or may not leave any visible indication on the COPV composite surface.

1.12 This guide does not specify accept/reject criteria (Section 4.10) used in procurement or used as a means for approving PVs or COPVs for service. Any acceptance criteria provided herein are given mainly for purposes of refinement and further elaboration of the procedures described in the guide. Project or original equipment manufacturer (OEM) specific accept/reject criteria shall be used when available and take precedence over any acceptance criteria contained in this document.

1.13 This standard references established ASTM Test Methods that have a foundation of experience and that yield a numerical result, and newer procedures that have yet to be validated which are better categorized as qualitative guidelines and practices. The latter are included to promote research and later elaboration in this standard as methods of the former type.

1.14 To insure proper use of the referenced standard documents, there are recognized NDT specialists that are certified according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any thin-walled metallic component design, quality assurance, in-service maintenance, or damage examination.

1.15 The values stated in metric units are to be regarded as the standard. The English units given in parentheses are provided for information only.

1.16  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.17  This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard NumberASTM E2982 - 14e1
TitleStandard Guide for Nondestructive Testing of Thin-Walled Metallic Liners in Filament-Wound Pressure Vessels Used in Aerospace Applications
Publication Date01 October 2014
Normative References(Required to achieve compliance to this standard)No other standards are normatively referenced
Informative References(Provided for Information)No other standards are informatively referenced
Descriptors acoustic emission (AE), composite overwrapped pressure vessel (COPV), composite pressure vessel, eddy current testing (ECT), filament-wound pressure vessel, laser profilometry, leak testing (LT), metallic liner, nondestructive testing (NDT), penetrant testing (PT), pressure vessel, profilometry, radiography, radiologic testing (RT), radiology
File Size960 KB

 Your basket
Your basket is empty

Multi-user access to over 3,500 medical device standards, regulations, expert commentaries and other documents

Develop a PAS

Develop a fast-track standardization document in 9-12 months

Tracked Changes

Understand the changes made to a standard with our new Tracked Changes version


The faster, easier way to work with standards