ASTM E262 - 17 - Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

ASTM E262 - 17

Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

Status : Current   Published : August 2017

Format
PDF

Format
HARDCOPY



1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to their particular situation the fundamental procedures of the following techniques.

1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy.

1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and

1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy.

1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-temperature environments are discussed in 9.2. For those circumstances where the use of cadmium as a thermal shield is undesirable because of potential spectrum perturbations or of temperatures above the melting point of cadmium, the method described in Test Method E481 can be used in some cases. Alternatively, gadolinium filters may be used instead of cadmium. For high temperature applications in which aluminum alloys are unsuitable, other alloys such as cobalt-nickel or cobalt-vanadium have been used.

1.3 This test method may be used to determine the equivalent 2200 m/s fluence rate. The accurate determination of the actual thermal neutron fluence rate requires knowledge of the neutron temperature, and determination of the neutron temperature is not within the scope of the standard.

1.4 The techniques presented are suitable only for neutron fields having a significant thermal neutron component, in which moderating materials are present, and for which the average scattering cross section is large compared to the average absorption cross section in the thermal neutron energy range.

1.5  Table 1 indicates the useful neutron-fluence ranges for each detector material.

TABLE 1 Useful Neutron Fluence Ranges of Foil Material

[This table has been removed.]

1.6  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7  This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.




Standard NumberASTM E262 - 17
TitleStandard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques
StatusCurrent
Publication Date01 August 2017
Normative References(Required to achieve compliance to this standard)No other standards are normatively referenced
Informative References(Provided for Information)No other standards are informatively referenced
Descriptors Dosimetry, Fissile Materials, Flux And Fluence, Neutron Fluence, Nuclear Materials, Nuclear Process, Radioactivation, Reaction Rate, Thermal Neutron Flux
ICS17.240
PublisherASTM
FormatA4
DeliveryYes
Pages11
File Size172 KB
Price£45.00


 Your basket
Your basket is empty

Multi-user access to over 3,500 medical device standards, regulations, expert commentaries and other documents


Develop a PAS

Develop a fast-track standardization document in 9-12 months


Tracked Changes

Understand the changes made to a standard with our new Tracked Changes version


Worldwide Standards
We can source any standard from anywhere in the world