ASTM E798 - 16 - Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources
Essential maintenance work will be carried out on BSI Shop over the weekend of 12 and 13 June 2021. BSI Shop will be operational during this time but you might experience slowness for a very brief period of time. Please accept our apologies for any inconvenience this may cause.

ASTM E798 - 16

Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

Status : Current   Published : October 2016



1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources ( 1). 2 Interest in spallation sources has increased recently due to their development of high-power, high-flux sources for neutron scattering and their proposed use for transmutation of fission reactor waste ( 2).

1.2 Many of the experiments conducted using such neutron sources are intended to provide a simulation of irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these experiments is to establish the fundamental relationships between irradiation or material parameters and the material response. The extrapolation of data from such experiments requires that the differences in neutron spectra be considered.

1.3 The procedures to be considered include methods for characterizing the accelerator beam and target, the irradiated sample, and the neutron flux (fluence rate) and spectrum, as well as procedures for recording and reporting irradiation data.

1.4 Other experimental problems, such as temperature control, are not included.

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Standard NumberASTM E798 - 16
TitleStandard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources
Publication Date01 October 2016
Normative References(Required to achieve compliance to this standard)No other standards are normatively referenced
Informative References(Provided for Information)No other standards are informatively referenced
Descriptors Accelerators, Cyclotrons, Fusion, Ion irradiation, Radiation damage simulation, Spallation
File Size355 KB

 Your basket
Your basket is empty

Multi-user access to over 3,500 medical device standards, regulations, expert commentaries and other documents

Worldwide Standards
We can source any standard from anywhere in the world

Develop a PAS

Develop a fast-track standardization document in 9-12 months

Tracked Changes

Understand the changes made to a standard with our new Tracked Changes version